Survey on Spatial Item Recommender System using SPORE Model
نویسندگان
چکیده
منابع مشابه
A LCARS: A Spatial Item Recommender System
Newly emerging location-based and event-based social network services provide us with a new platform to understand users’ preferences based on their activity history. A user can only visit a limited number of venues/events and most of them are within a limited distance range, so the user-item matrix is very sparse, which creates a big challenge to the traditional collaborative filtering-based r...
متن کاملHybrid Recommender System Based on Variance Item Rating
K-nearest neighbors (KNN) based recommender systems (KRS) are among the most successful recent available recommender systems. These methods involve in predicting the rating of an item based on the mean of ratings given to similar items, with the similarity defined by considering the mean rating given to each item as its feature. This paper presents a KRS developed by combining the following app...
متن کاملUsing Item Descriptors in Recommender Systems
One of the earliest and most successful technologies used in recommender systems is known as collaborative filtering, a technique that predicts the preferences of one user based on the preferences of other similar users. We present here a different approach that uses a simple learning algorithm to identify and store patterns about items, and a noisy-OR function in order to find recommendations....
متن کاملIMPROVE THE RECOMMENDER SYSTEM USING SEMANTIC WEB
To buy his/her necessities such as books, movies, CD, music, etc., one always trusts others’ oral and written consultations and offers and include them in his/her decisions. Nowadays, regarding the progress of technologies and development of e-business in websites, a new age of digital life has been commenced with the Recommender systems. The most important objectives of these systems include a...
متن کاملDistributed-Representation Based Hybrid Recommender System with Short Item Descriptions
Collaborative filtering (CF) aims to build a model from users’ past behaviors and/or similar decisions made by other users, and use the model to recommend items for users. Despite of the success of previous collaborative filtering approaches, they are all based on the assumption that there are sufficient rating scores available for building high-quality recommendation models. In real world appl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IJARCCE
سال: 2016
ISSN: 2278-1021
DOI: 10.17148/ijarcce.2016.51276